Real world ocean rogue…
Authors: Francesco Fedele, Joseph Brennan, Sonia…
Authors: Denys Dutykh, Didier Clamond, Marx Chhay
In this study, we discuss an approximate set of equations describing water wave propagating in deep water. These generalized Klein-Gordon (gKG) equations possess a variational formulation, as well as a canonical Hamiltonian and multi-symplectic structures. Periodic travelling wave solutions are constructed numerically to high accuracy and compared to a seventh-order Stokes expansion of the full Euler equations. Then, we propose an efficient pseudo-spectral discretisation, which allows to assess the stability of travelling waves and localised wave packets.